
 

 

Advancing Identification of DNA-Protein Binding 

Residues Using Deep Learning Techniques 

Haipeng Zhao 1 and Hongjie Wu 1 

1 Suzhou University of Science and Technology 
hongjie.wu@qq.com 

Abstract. Accurate identification of DNA-protein binding sites is vital for un-

derstanding biological processes and facilitating drug discovery. This study in-

troduces a novel method that integrates a Transformer encoder with Bi-direc-

tional Long Short-Term Memory (BiLSTM) to predict DNA-protein binding res-

idues effectively. The method enriches protein representation by combining evo-

lutionary information from the position-specific scoring matrix (PSSM) with spa-

tial information from predicted secondary structures. Experimental results 

demonstrate the method's competitiveness, achieving an MCC of 0.349, SP of 

96.50%, SN of 44.03%, and ACC of 94.59% on the PDNA-41 dataset. 
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1 Introduction 

DNA-protein interactions are critical for biological processes like transcription and 

DNA repair. Identifying binding sites is essential for understanding gene regulation and 

disease mechanisms and for drug design. Traditional experimental methods are costly 

and time-consuming. Computational methods offer a more efficient alternative. 

Given the importance of protein-DNA binding, many wet-lab methods have been 

developed to identify protein-DNA binding residues. These methods include X-ray 

crystallography [6], Fast ChIP [7], and electrophoretic mobility shift assays (EMSAs) 

[8,9]. Although wet-lab methods can yield precise identification outcomes, they are 

expensive and labor intensive. Moreover, they cannot keep up with the growth rate of 

protein sequences in the post-genomic era [10]. Therefore, there is a need to develop 

an efficient and convenient computation-based method for identifying protein-DNA 

binding residues. With advancements in computer theory, a number of computational 

methods have emerged for this purpose. These methods can be broadly categorized into 

three types: sequence-based, structure-based, and hybrid methods [11]. 

Bioinformatics research primarily focuses on sequence-based methods, which pose 

a significant challenge. Predicting protein-DNA binding residues using only sequence-

based features may have poor performance due to the limited information contained in 

protein sequences. However, the number of protein sequences is increasing day by day, 

research in this area is still focused on utilizing sequence features. In the past decade, 

several sequence-based methods have been proposed. These include BindN [12], 
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ProteDNA [13], DP-Bind [14], BindN+ [15], MetaDBSite [16], TargetDNA [17], 

DNABind [18], DNAPred [19] and PredDBR [20], among others. In BindN, they uti-

lized three types of protein sequence features: hydrophobicity, side chain pKa value, 

and molecular mass of amino acids. These features were inputted into a support vector 

machine (SVM) to accurately predict protein-DNA binding residues. In DP-Bind, they 

utilized evolutionary information obtained from protein sequences, specifically the po-

sition-specific scoring matrix (PSSM) [21]. To enhance the recognition accuracy of 

protein-DNA binding residues, three conventional machine learning techniques were 

combined: penalized logistic regression, SVM, and kernel logistic regression. In Tar-

getDNA, they used two protein sequence features, solvent accessibility and evolution-

ary information, and made use of an undersampling technique to divide the raw data 

into multiple sub-datasets and applied multiple SVMs for ensemble learning to predict 

protein-DNA binding residues. 

Structure-based methods utilize either natural or predicted 3D structure information 

of proteins. This is because the 3D structure of a protein contains a large amount of 

information and the structure of a protein determines the function of the protein to some 

extent. Consequently, utilizing protein structure information for predicting protein-

DNA binding residues often yields better performance than sequencebased methods. 

Common structure-based methods include: DBD-Hunter [22], DNABINDPROT [23], 

DR_bind [24], PreDs [25], etc. All these methods mentioned above use only the struc-

ture information of the protein and ignore the information that may be contained in the 

protein sequence that may be helpful in predicting the protein-DNA binding residues. 

To enhance prediction accuracy, hybrid methods integrate both sequence and structure 

information. Some common hybrid methods include: TargetATP [26], COACH [27], 

TargetS [28], SVMPred [29] and NsitePred [30], etc. In DR_bind, the model predicts 

protein-DNA binding residues by utilizing evolutionary, geometric and electrostatic 

properties to describe the protein structure. In COACH, they designed an algorithm 

named TM-SITE to infer binding sites from homologous structural templates and also 

an algorithm named S-SITE for sequence. 

2 Method 

The study uses the PDNA-543 and PDNA-41 datasets, enriching protein features by 

combining PSSM evolutionary information with secondary structure predictions. The 

model architecture includes a Transformer encoder, BiLSTM, and a convolutional fea-

ture extraction module, followed by a multilayer perceptron (MLP) decoder for residue 

classification. 

PSSM features were generated using PSI-BLAST, and secondary structure predic-

tions were made using PSIPRED. These features were combined to form a comprehen-

sive protein representation. 

The model integrates a Transformer encoder and BiLSTM to capture long-range de-

pendencies and local residue features. A convolutional layer processes the encoded pro-

tein feature matrix, and an MLP decoder generates the binding pattern. 
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2.1 Framework 

The PDNA-543 and PDNA-41 datasets were utilized, with the former used for training 

and the latter for testing the model's generalization performance. 

2.2 Train 

The model was evaluated using the DUD-E dataset and the Human dataset, which are 

standard benchmarks for DTI prediction. 

The model was trained using binary cross-entropy loss and the Adam optimizer. 

Evaluation metrics included MCC, SP, SN, and ACC. 
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Fig. 1. Architecture. 
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3 Results 

The proposed method demonstrated improved performance over existing classifiers, 

with significant improvements in MCC, SP, SN, and ACC on the PDNA-41 dataset. 

The combination of Transformer encoder and BiLSTM effectively captured both global 

and local residue features. 

The study presents a robust method for identifying DNA-protein binding residues 

using deep learning. The method's effectiveness lies in its ability to capture long-range 

dependencies and local features, offering a user-friendly approach that requires only 

protein sequences as input. Future work will explore incorporating three-dimensional 

structural information and graph neural networks for further enhancements. 

In this study, we propose an encoder-decoder model to predict protein-DNA binding 

sites. To represent a protein sequence, we use two sequence-based features, the evolu-

tionary feature PSSM and the predicted secondary structure, respectively. Unlike cur-

rent state-of-the-art methods, our model enables end to end prediction of an entire pro-

tein sequence without the need for feature pre-extraction for each residue using a sliding 

window technique, which demonstrates the ease of use of our model. Comparing with 

previous methods, our model achieves respectable performance on the PDNA-41 test 

set (MCC:0.343, SP:96.37%, SN:46.34%, ACC:94.79%), which proves the effective-

ness of our model. 

While our method has made some progress and can handle variable length protein 

sequences, it also limits our model to one protein input at a time. Therefore, we will 

further try more models for the problem of inconsistent protein sequence lengths. Given 

the success of graph neural networks in bioinformatics, we will try to employ graph 

structures to represent protein sequences to identify DNA binding residues. In addition, 

the features used in this work could be improved. With the great achievements in the 

field of protein structure prediction in recent years, we can use the predicted structural 

information to aid in this task. 
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