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Abstract. The traditional drug discovery process is both time-consuming and 

costly. Utilizing artificial intelligence to predict drug-target binding affinity 

(DTA) has become a crucial approach for accelerating new drug discovery. This 

study introduces a novel deep learning-based method that incorporates both the 

primary and secondary structures of proteins to better represent the local and 

global features of proteins. We employ convolutional neural networks (CNNs) 

and graph neural networks (GNNs) to model proteins and drugs separately, cap-

turing their interactions more effectively. Our method demonstrated improved 

performance in predicting DTA compared to state-of-the-art methods on two 

benchmark datasets. 
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1 Introduction 

Developing a new drug that reaches the market costs approximately $2.6 billion, with 

a low approval rate of less than 12%. Therefore, computer-aided drug development has 

become a hot research topic. Accurately identifying drug-target interactions is essential 

in the computational stages of drug development. Our method focuses on predicting 

DTA by representing proteins using both their primary and secondary structures. 

Developing a new drug that can be brought to market costs approximately $2.6 bil-

lion, and the approval rate of new drugs that enter clinical trials is less than 12% [1,2]. 

Moreover, developing a new drug requires a significant amount of time [3]. Therefore, 

computer-aided drug development has become a hot research topic in recent years [4]. 

Accurately identifying drug-target interactions is an essential step in the computational 

stages of drug development [5]. Currently, there are mainly two categories of compu-

tational methods used for predicting drug-target interactions. The first type treats inter-

action prediction as a binary classification task [6], that is, determining whether a drug 

and a target interact or not. The other type treats it as a regression task for predicting 

the binding affinity between the drug and the target. Binding affinity can measure the 

strength of drug-target interactions, and is usually expressed using inhibition constant 

(Ki), dissociation constant (Kd), or the half maximal inhibitory concentration (IC50) 

[7].  
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Our method focuses mainly on predicting drug-target binding affinity (DTA). 

There are several computational methods used for predicting DTA. One approach is  

the ligand-based method which compares a query ligand to known ligands based on 

its target protein. However, if the number of known ligands for the target protein is 

insufficient [8], the predictions may be unreliable [9]. Another approach is molecular 

docking [10], which models the binding of compounds and proteins in conformational 

space based on their 3D structures. However, preparing 3D protein-ligand complexes 

can be quite challenging [11]. 

Predicting DTA using computational methods typically involves three main steps.  

First, drug and target protein data are converted into computationally ready vectors 

or graphs using various encoding methods [12]. The commonly used representation 

forms of drugs mainly include simplified molecular linear input specification 

(SMILES) [13], molecular fingerprint and graph. Proteins are usually represented using 

one-hot encoding to capture their primary sequences. Second, different feature extrac-

tion methods are applied to obtain representative features of drugs and proteins, which 

are then used to replace their original input features. Finally, a regression process is 

performed to combine the respective representations and predict binding affinities. 

In recent years, deep learning (DL) has made significant progress in the field of 

computer-aided drug design [14], particularly in the prediction of DTA. Many DLbased 

methods have been developed to improve DTA prediction performance. One of the 

earliest DL-based DTA prediction models, DeepDTA [15] uses one-dimensional (1D) 

convolutional neural networks (CNN) to extract sequence features of drugs and pro-

teins, it uses the protein primary sequence and the SMILES string of the drug ligand as 

input, without incorporating any additional input information. WideDTA [16] improves 

prediction performance by incorporating protein domain information. However, ex-

pressing drugs as SMILES strings leads to the loss of their original graph structure, 

motivating the use of graph neural networks (GNN). GraphDTA [17] represents drugs 

as graphs, using multiple GNN variants such as the graph convolutional network 

(GCN)[18], the graph attention network (GAT) [19], and the graph isomorphism net-

work (GIN) [20], and retaining CNN to represent proteins. This model outperformed 

existing 1D methods, highlighting the importance of structural information. However, 

these models only consider the overall interaction between drugs and proteins. 

MGraphDTA[21] introduces dense connections into the GNN and builds an ultra-deep 

network structure consisting of 27 layers of GCN. This architecture enables the simul-

taneous capture of local and global structures of compounds, improving the prediction 

performance of DTA. Additionally, MGraphDTA proposes a new visualization method 

to better understand the role of GNN in DTA prediction. DeepAffinity [22] introduces 

an attention mechanism to learn the binding site information between compounds and 

proteins, improving model interpretability. These approaches have demonstrated the 

success of using CNNs for feature extraction from protein sequences. GraphDTA, on 

the other hand, uses a graph structure to represent drugs and applies GCN for feature 

extraction, leading to improved prediction performance. This indicates that graph struc-

tures can be effectively utilized in DTA prediction. The above method mainly uses the 

primary structure of the protein, that is, the amino acid sequence to represent and input, 
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and can only extract the global features of the protein, ignoring the local features of the 

protein in a segment. 

In this paper, we propose a novel deep learning-based method for predicting DTA 

that integrates both global and local features of proteins. The entire model comprises 

three distinct modules: the global protein features module, the local protein fea-

turesmodule, and the ligand module. The protein data is one-dimensional and consists 

of the amino acid sequence structure and secondary structure of the protein, while the 

drug ligand is represented using graph data. We use CNN to learn the representation of 

protein primary and secondary sequences, employ GAT and GCN to learn the graph 

data representation of drugs, and finally concatenate the features obtained from the con-

volution and maximal pooling layers of the three modules and fed them into the classi-

fication component. 

2 Method 

We evaluated our model on two public datasets: Davis and KIBA. Protein secondary 

structure information was predicted using MLRC methods and incorporated into our 

model. Primary protein sequences were represented using one-hot encoding, and sec-

ondary structures were represented using 8D one-hot vectors. Drugs were represented 

as graphs using SMILES strings converted with RDKit. 

Our model predicts drug-target interactions as a regression task, aiming to predict 

specific binding affinities. The proposed model architecture consists of three functional 

modules: global protein features, local protein features, and ligand features. 

2.1 Global Protein Features Module 

This module uses a CNN to learn the representation of protein primary sequences. The 

primary sequence is represented as a one-dimensional sequence of amino acids using a 

20D one-hot encoding scheme. The CNN consists of three convolutional layers with an 

increasing number of filters, followed by max pooling layers. This allows the model to 

capture global features of the protein sequence. 

Local Protein Features Module.This module also uses a CNN, but it focuses on 

learning the representation of protein secondary structures. Secondary structures are 

represented using an 8D one-hot vector for each amino acid type. The CNN here also 

consists of three convolutional layers followed by max pooling layers, capturing the 

local features of the protein. 

Ligand Features Module.Drug compounds are represented as graphs with nodes 

representing atoms and edges representing chemical bonds. We use the Graph Attention 

Network (GAT) and Graph Convolutional Network (GCN) to learn the graph data rep-

resentation of drugs. The GAT layer learns the importance of each node using a self-

attention mechanism, while the GCN layers capture the connectivity relationship be-

tween graph nodes. 

Classification Component.The features from the max pooling layers of the three 

modules are concatenated and fed into a classification component. This component 
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consists of three fully connected layers with 1024, 512, and 512 nodes, respectively. 

Dropout layers with a rate of 0.2 are used after the first two fully connected layers to 

prevent overfitting. The output layer predicts the binding affinity. 

2.2 Train 

The model was trained for 1000 epochs with a batch size of 512 and a learning rate of 

0.0005. The Adam optimization algorithm and Rectified Linear Unit (ReLU) activation 

function were used to train the network. Mean Squared Error (MSE) was used as the 

loss function. 

 

Fig. 1. Architecture. 
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3 Results 

Our model showed superior performance compared to DeepDTA, WideDTA, 

GraphDTA, and AttentionDTA models on both the Davis and KIBA datasets. The in-

clusion of protein local features improved prediction accuracy, as indicated by the 

lower MSE and higher CI scores. 

Our deep learning model, which incorporates primary and secondary protein struc-

tures, predicts drug-target binding affinity more accurately. The enriched datasets can 

be used in future experiments. 
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