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Abstract. DNA-binding proteins (DBPs) are crucial in gene-related life activi-

ties. Traditional methods for DBP prediction are labor-intensive and costly. We 

present a novel method using deep transfer learning to predict DBPs efficiently. 

Our approach extracts sequence and PSSM features, employs transfer learning 

algorithms to construct datasets, and uses an attention mechanism-equipped neu-

ral network for prediction. 
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1 Introduction 

DBPs play a key role in DNA replication, transcription, regulation, and other cellular 

processes. Traditional experimental methods for DBP identification are resource-inten-

sive. Computational methods offer a more efficient alternative. We focus on developing 

a computational approach using deep transfer learning to predict DBPs accurately. 

Protein is very important for the human body. Some of these proteins can interact 

with DNA and are called DNA-binding proteins (DBPs). These are very important for 

gene-related life activities. For example, in DNA replication and repair functions, ori-

gins of replication sites [1] is the location where genomic DNA replication begins, and 

is important for the study of the DNA replication process. In Mathematical Biosciences 

and Engineering Volume 19, Issue 8, 7719-7736.transcription and regulatory functions, 

RNA is an important molecule in the cell. Messenger RNA passes genetic information 

to DNA and acts as a template for protein synthesis, while only 2% of RNA molecules 

in proteins act as templates, the rest being a molecule called MicroRNA, which plays 

an important regulatory role in biological processes. Identifying molecules of Mi-

croRNA [2] helps to understand the whole regulatory process, while some other func-

tions are single-stranded DNA binding and separation functions, chromatin formation 

functions and cell development functions [3,4]. In addition, research into drug target 

proteins [5,6] and DNA expression genetics are also quite popular, as drug target pro-

teins are closely related to human diseases, while DNA expression genetics include  

DNA N4-methylcytosine [7,8], histone modification, RNA interference, etc. The 

main study in this paper is DNA binding proteins. Identification of DBPs can help us 

better understand how proteins interact with DNA, thus promoting the development of 

life science. 
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Although the traditional method based on biological experiments can obtain high-

precision results, it needs large quantities of time and human effort. In addition, with 

the advent of the postgenome era, Web-lab methods cannot keep up with the growth 

rate of protein sequences. By contrast, computational approach reduces the resources 

and manpower required and enables simple and efficient identification of DBPs from 

many protein sequences. Thus, for the development of bioinformatics, the use of com-

putational methods to predict DBPs is of great value. 

In the past decade, machine learning based algorithms are already getting a lot of 

attention, and researchers have also proposed several research algorithms. In general, 

DNA-binding proteins can be identified by two computational methods, one based on 

structure and the other on sequence. Gao et al. [9] proposed a knowledge-based method 

called DBD-Hunter. This method uses protein structural alignment and statistical po-

tential energy assessment to predict DBPs. Nimrod et al. [10] used the 3D structure of 

proteins to predict DBPs. They used a random forest classifier to determine whether a 

protein was a DBP based on features obtained from the protein’s evolutionary profile. 

Zhao et al. [11] Identification of DBPs proteins using 3D structures generated based on 

HHblits [12]. However, structure-based approaches rely on predicted or natural 3D pro-

tein structures, and obtaining these structures is difficult. As a result, many sequence-

based methods have been developed. Kumar et al. [13]developed a random forest ap-

proach called DNA-Prot to identify DBPs from protein sequences. Liu et al. [14] de-

veloped a predictor called iDNAPro-PseAAC, which relies only on protein sequence  

information. They applied PseAAC [15,16] to support vector machines to identify 

DBPs. Wei et al. [17]used the features extracted from the local PSE-PSSM (pseudo 

location-specific scoring matrix) in combination with a random forest classifier and to 

identify DBPs. Mishra et al. [18] proposed a method called StackDPPred, which uses 

features extracted from PSSM and residue-specific contact energy to help train a stack-

ing-based machine learning method that can effectively predict DNA-binding proteins.  

Nanni et al. [19] in order to build an optimal and most general classification system 

for DNA-binding proteins, features were experimentally extracted from proteins and 

trained and evaluated in a separate support vector machine, while the matrix of proteins 

was fine-tuned using convolutional neural networks with different parameter settings, 

and the decisions were fused with the support vector machine using weights and rules 

for predicting DBPs. In recent years, deep learning has proven to be very effective in 

image and natural language processing. Therefore, researchers gradually began to apply 

deep learning in bioinformatics. Deep learning methods need only to input raw data and 

do not need to manually extract features, as does machine learning. For example, Qu et 

al. [20] used a combination of LSTM and CNN and extracted features from protein 

sequences to predict DBPs.Shadab et al. [21] proposed two methods, DeepDBP-ANN 

and DeepDBP-CNN, by using deep 

2 Method 

Our method combines transfer learning with deep learning. We used two transfer learn-

ing algorithms, DDC and TrAdaBoost, to expand the dataset and improve prediction 
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performance. An attention mechanism was integrated into the deep neural network to 

enhance prediction accuracy. 

2.1 Transfer Learning Framework 

We utilized transfer learning to extract related datasets and train our model. The frame-

work includes sequence and PSSM feature extraction followed by deep learning model 

training using an attention mechanism. 

We applied DDC to reduce the distribution distance between source and target do-

mains. TrAdaBoost was used for data migration, adjusting weights during iterations to 

focus on misclassified samples. 

An attention mechanism was added to improve model efficiency and accuracy, al-

lowing the model to focus on critical features similarly to human focus. 

We used one-hot coding for sequence representation and PSSM for evolutionary in-

formation capture. 

In the experiments of this study, the main approach to prediction was to use a con-

junction of transfer learning and deep learning. First, the transfer learning algorithm 

was used to extract the data set S, which was related to the target sample, but not com-

pletely distributed based on sample similarity.  

Then the sequence and PSSM [25] features of data set S were extracted, in a deep 

network with an attention mechanism, the features are input and trained. 

In the deep learning part of this method, the sequence and PSSM features were en-

tered into LSTM [26] and CNN [27] respectively. In subsequent improvements, ResNet 

[28] was used to replace CNN, and better results were obtained. The final prediction 

results of these two parts also need to go through the fully connected layer. Figure 1 

shows an overall prediction framework, mainly based on the DBP [29,30] prediction 

framework of deep transfer learning 

2.2 Train 

Our model was trained using the Adam optimizer in PyTorch with cross-entropy loss 

over 40 epochs. 

We used Accuracy, MCC, Sensitivity, and Specificity as our evaluation metrics. 

We used the PDB186 dataset for testing and compared our method with other exist-

ing methods. Our method showed superior performance. 
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Fig. 1. Architecture. 

We compared various neural network models and found that deeper models like 

ResNet improved performance. 

Our transfer learning approach showed significant improvement in model perfor-

mance with fewer labeled samples. Our deep transfer learning method outperformed 

traditional machine learning methods, demonstrating better prediction accuracy and ro-

bustness. 

3 Results 

Our deep transfer learning approach for DBP prediction is efficient and accurate. It 

overcomes the limitations of traditional methods by reducing the need for extensive 

resources. Future work will focus on improving prediction accuracy by addressing 

noisy samples. 
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Fig. 2. Results. 

The integration of multiscale CNNs and graph representations for drug molecules and 

protein sequences, respectively, yielded superior results in DTA prediction. Our model 

offers a promising approach for accelerating drug discovery. 
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