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Abstract. The process of discovering new drugs is costly and time-consuming, 

with safety concerns often arising. Deep learning has become a mainstream ap-

proach in computer-aided drug design, with convolutional neural networks 

(CNN) and graph neural networks (GNN) playing a significant role in drug-target 

affinity (DTA) prediction. This paper introduces a novel method for predicting 

DTA using a combination of graph convolutional networks and a three-branch 

multiscale CNN, leading to significant improvements in prediction accuracy. 
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1 Introduction 

Proteins are involved in all aspects of cellular life activities and play a crucial role in 

human immunity. The ability to accurately predict drug-target binding affinity is a key 

focus in the discovery and repositioning of new drugs. Traditional experimental meth-

ods have evolved but are limited by being time-consuming and labor-intensive. Com-

puter-aided drug design methods have been developed to save time and labor costs ef-

fectively. 

Proteins involve all aspects of cellular life activities, and they play a vital role in 

human immunity [1]. Many diseases are caused by the biochemical dysfunction of pro-

tein allogeneic. Specific drugs can alter the way native proteins in the body work, re-

sulting in the desired therapeutic effect [2]. In the discovery and repositioning of new 

drugs, the ability to accurately predict the drug–target binding affinity becomes the fo-

cus of research [3].While experimental methods in wet labs have evolved to screen and 

characterize chemical molecules, large-scale identification of potential compounds is 

time-consuming and labor-intensive [4].  

In order to save time costs and labor costs, and to make efficient use of resources, 

many methods of computer-aided drug design have been developed [5]. Virtual screen-

ing is one of the main methods. It involves the prediction of potential drugs by many 

computational models to screen out the drug candidate ligands of interest receptor pro-

teins from large-scale compound ligand libraries. Virtual screening can greatly reduce 

the number of candidate ligands, significantly reduce the experimental cycle, and thus 
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accelerate drug discovery [6]. Virtual screening methods can be divided into two cate-

gories: receptor-based virtual screening and ligand-based virtual screening methods. 

Receptor-based virtual screening mainly studies the three-dimensional structure of pro-

teins and seeks interaction with small molecule compounds from the three-dimensional 

structure [7-9], so it is also called structure-based virtual screening. Common structure-

based virtual screening, such as molecular docking [10, 11] and molecular dynamics 

simulations [12], has been extensively studied.  

Although these methods are highly explanatory, their practical application is limited, 

because they rely heavily on the high-quality threedimensional structure of proteins, 

and are computationally expensive and inefficient. Ligand-based virtual screening usu-

ally starts from the ligand, analyzes the molecular structure and activity information of 

the known inhibitor, and summarizes the structural characteristics that have an im-

portant contribution to the binding ability of the compound by induction. This learned 

knowledge is then used to screen new ligands to find the compound molecules that meet 

the requirements [13].  

Virtual screening methods are usually based on predictingdrug–target interactions 

or DTA. The main manifestation is that the input is a vector or graph after the drugs 

and proteins are encoded, and the output is a classification problem or a regression 

problem. However, the interactions can be understood as a series of consecutive values 

used to express the strength of the differentdrug–target interactions. Previously, there 

were quite a few research ideas that measured drug–target interactions as binary clas-

sification tasks [14-18]. In this paper, we focus on DTA prediction. In recent years, 

deep learning methods have shown excellent performance in many fields [19, 20], and 

researchers have proposed various data-driven methods based on deep learning [21-24] 

to study drug targeted binding [25-29].  

For example, the deep learning-based DTA prediction model DeepDTA [30], uses a 

simplified molecular input line entry specification (SMILES) as a drug signature and a 

protein amino acid as a protein signature. Two features are input into two convolutional 

neural networks (CNNs) for extraction, and a regression module is then used for pre-

diction through a fully connected layer. GANsDTA [31] is based on a semisupervised 

generative adversarial network (GAN), which consists of two parts, two GANs for fea-

ture extraction and one regression network for prediction. WideDTA [32] takes into 

account chemical and biological information, using deep learning from four CNNs to 

predict DTA. DeepAffinity [33] feeds sequences and protein structural properties with 

drugs into recurrent neural networks (RNNs) for learning.  

Deep learning excels in the DTA prediction space [34] and has achieved many 

achievements. However, in deep learning models [35-37], most experiments express 

drugs in the form of strings, and the form of one-dimensional sequences is not the nat-

ural way molecules are expressed. When we use strings, the structure information of 

the numerator is lost. The use of graph convolutional networks has also been shown to 

be more beneficial for computational drug discovery. PADME uses molecular map 

convolution to predict drug-target interactions, which suggests the potential of GNN in 

drug development [38]. GraphDTA [39] applied the graph to small molecules to build 

predictive DTA models for the first time and showed good performance. Although both 
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CNN-based and graph neural network (GNN)-based approaches have shown good per-

formance at  

DTA predictions, there are still some problems that have not been well addressed. 

First of all, most deep learning methods have only a few CNN layers, and after stacking 

through convolutional layers, the entire feature information is compressed into a small 

part, but some local features of the original data are lost. Second, simply using a graph 

convolutional network (GCN) [9, 39] to graphically express features, does not take into 

account that the characteristics of each node have different effects on their adjacent and 

farther nodes, and the closer the node, the greater the impact. To solve the above prob-

lems, we propose a method based on the combination of GCN and CNN, putting 

SMILES into the GCN in the graph, considering the neighboring node weights, and 

using the attention mechanism based on the GCN. Global and local signatures of pro-

teins are obtained using a three-branched multiscale convolutional neural network 

(MCNN) [40] at the same time, after which molecular and protein signatures are fused 

and fed into the prediction module. The prediction module contains three fully con-

nected layers that finally output DTA values. 

2 Method 

Our approach involves constructing drug molecules into graph representation vectors 

and learning feature expressions through graph attention networks (GAT) and graph 

convolutional networks (GCN). A three-branch CNN learns the local and global fea-

tures of protein sequences, and the two feature representations are merged into a re-

gression module to predict DTA. 

In this study, we used one model to deal with drug molecules and another to deal 

with protein data, for the regression problem of DTA prediction. First, we process the 

SMILES of drug molecules into graph form with RDKit [41]. The GNN starts with a 

GAT layer that takes the graph as input and then passes a convolutional feature matrix 

to the subsequent GCN layers. Each layer is activated by a rectified linear unit (ReLU) 

function. The final graph representation vector is then computed by concatenating the 

global max pooling layer and global average pooling layer output by the GCN layer. 

We represent proteins with amino acid sequences, encode the protein sequences and 

input them into the embedding layer and then into our CNN. Here, we use a three-

branch CNN to extract the local and global signatures of protein amino acid sequences. 

The three branches use CNNs with different layers and extract different ranges of pro-

tein features, which we named the local branch, the middle branch, and the global 

branch, respectively. After passing through a max pooling layer, the outputs are com-

bined as a protein representation vector. Finally, the molecular representation vector 

and the protein representation vector are combined and input into the regression mod-

ule. We use three fully connected layers and set a dropout layer and a ReLU layer after 

each fully connected layer, and finally output the predicted value of DTA. 
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2.1 Framework 

The framework includes two separate models for drug molecules and protein data. Drug 

SMILES strings are converted into graph form, and features are extracted using GAT 

and GCN layers. For proteins, amino acid sequences are encoded and input into a three-

branch CNN to extract local and global features. The final molecular and protein vec-

tors are combined and input into the regression module for DTA prediction. 

2.2 Model 

We evaluate our model on the Davis and KIBA datasets, which are widely used bench-

marks for protein and drug binding affinity predictions. 

Drugs are represented using SMILES strings converted into graph format RDKit, 

and proteins are encoded using a 25-tag system based on amino acid properties. 

The GAT layer applies a shared linear transformation and calculates attention coef-

ficients for each node. The GCN processes the graph structure, and a multiscale CNN 

extracts features from protein sequences. 

We use the consistency index (CI) and mean squared error (MSE) as metrics to eval-

uate model performance. 

We evaluate our model on two DTA datasets: Davis [42] and KIBA [43]. These two 

datasets are widely used as benchmark datasets for protein and drug binding affinity 

predictions. The Davis dataset contains data for selective analysis of kinase protein 

families and related inhibitors, using dissociation constant (Kd) values [44]. The KIBA 

dataset combines Kd, the inhibition constant (Ki) [45], or the semi-maximum inhibitory 

concentration (IC50) [46], using the KIBA value as an affinity. Table 1 summarizes the 

statistics for both datasets. 
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Fig. 1. Architecture. 

3 Results 

Our model demonstrated a 2.5% improvement in CI and a 21% increase in accuracy as 

measured by MSE on the Davis dataset compared to DeepDTA. It also outperformed 

other models including GANsDTA, WideDTA, GraphDTA, and DeepAffinity. 



6  Lu and Wu 

 

 

 

Fig. 2. Results. 

The integration of multiscale CNNs and graph representations for drug molecules and 

protein sequences, respectively, yielded superior results in DTA prediction. Our model 

offers a promising approach for accelerating drug discovery. 
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