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Abstract: DNA contains the genetic information for the synthesis of proteins 

and RNA, and it is an indispensable substance in living organisms. DNA-

binding proteins are an enzyme, which can bind with DNA to produce complex 

proteins, and play an important role in the functions of a variety of biological 

molecules. With the continuous development of deep learning, the introduction 

of deep learning into DNA-binding proteins for prediction is conducive to 

improving the speed and accuracy of DNA-binding protein recognition. In this 

study, the features and structures of proteins were used to obtain their 

representations through graph convolutional networks. A protein prediction 

model based on graph convolutional network and contact map was proposed. 

The method had some advantages by testing various indexes of PDB14189 and 

PDB2272 on the benchmark dataset. 

Keywords: DNA-Binding Proteins, Graph Convolutional Network, Contact 

Map, Protein Prediction. 

1. Introduction 

With the development of gene sequencing, various sequencing studies have left many 

DNA and proteins, including DNA-binding proteins[1]. In order to improve the 

accuracy of structure and prediction, combining with the current developing trend of 

the technology of deep learning, a DNA binding protein prediction[2] model based on 

GCN[3] and contact map was proposed[4]. 

The protein graph depends on the sequence of the results of the comparison, so first 



introducing the preprocess of the dataset, including sequence comparison and filtering; 

the part of the output is used to calculate the features, and the other part as the input of 

Pconsc4 model[5], which is used to predict protein contact map, so the inputs of the 

model are feature matrix and adjacency matrix[6]. We use them for training and 

prediction. The research content of this paper is shown in Figure 1. 

 

Figure 1: The processing of proteins, including the preprocessing of sequence, the generation 

of graph structures, and feature extraction, Pconsc4 was used to extract protein structural 

information. Finally, protein graph was generated higher-level feature graph through GCN. 



2. Methods 

We have proposed a DNA binding protein prediction model based on graph 

convolutional network (GCN) and contact graph. This model obtains protein features 

and structural representations through graph convolutional networks, and extracts 

protein structural information using contact maps. The specific steps include 

preprocessing the dataset, using the Pconsc4 model to predict protein structure 

information[7], extracting protein features, and training and predicting DNA binding 

protein data. Figure 2 shows the architecture of the model. 

 

Figure 2: The structure of the GCN network, graphs of DNA-binding proteins through the 

GCN to get their representation. 

Predicting the structure of a protein from its sequence is the purpose of 

introducing contact map. Specifically, assuming that the length of protein 

sequence is M, the size of its contact map is M∗M.M(i,j) represents the probability 

of contact between the ith residue and the jth residue. If the value is less than the 

threshold value, it can be considered that they are in contact. Pconsc4 is a fast 

and efficient method to predict contact map. Since its output is a probability 

value between 0 and 1, the threshold value of 0.5 was set for the obtained contact 

maps, and the probability value greater than or equal to 0.5 was set as 1.The rest 

were set as 0, so that the structural information of the protein could be well 

extracted, corresponding to the adjacency matrix as the input GCN network .[8]. 



Figure 3 shows a protein contact map. 

 

Figure 3: The contact map of protein. 

The next step is the extraction of protein features. Since residues are used as nodes, 

the properties of residues are selected as features. Due to the differences in the R 

group, different features are displayed, including aromaticity, polarity, and explicit 

valence [9]. Position-specific scoring matrix (PSSM) is a commonly used 

representation of protein features, in which the results of each element depend on the 

results of sequence comparison, and these results represent the feature of proteins [10]. 

Other features were also used, such as the primary thermal coding of the remaining 

symbols, whether the residue was aromatic, whether the residue was acidic charged, 

and whether it was extremely neutral, etc. [11], as shown in Table 1. In summary, the 

total number of features is 54, so the protein’s feature matrix dimension is (M, 54) 

For PSSM, the basic position frequency matrix (PFM) [12] is calculated by the 

number of occurrence of residues at each position in the sequence of sequence 

alignment results. 

 



Table 1: Node features. 

Label Feature Size 

1 One-hot encoding of the residue symbol 21 

2 Position-specific scoring matrix (PSSM) 21 

3 Whether the residue is aliphatic 1 

4 Whether the residue is aromatic 1 

5 Whether the residue is polar neutral 1 

6 Whether the residue is acidic charged 1 

7 Whether the residue is basic charged 1 

8 Residue weight 1 

9 The negative of the logarithm of the dissociation constant for the –COOH 

group 

1 

10 The negative of the logarithm of the dissociation constant for the –NH3 group 1 

11 The negative of the logarithm of the dissociation constant for any other group 

in the molecule 

1 

12 The pH at the isoelectric point 1 

13 Hydrophobicity of residue (pH = 2) 1 

14 Hydrophobicity of residue (pH = 7) 1 

 due (pH = 7) 1 54 

 



3. Datasets 

The DNA-binding protein dataset selected is the internationally common dataset. 

PDB14189 and PDB2272 were established by Gomes et al[13]. Among them, the 

PDB14189 dataset was divided into 7129 DNA-binding protein sequences and 7060 

DNA-unbinding protein sequences, and the PDB2272 dataset was divided into 1153 

DNA-binding proteins and 1119 nonbinding proteins. PDB14189 was taken as the 

training set and PDB2272 as the test set. The dataset is detailed in Table 2 below. 

Among them, positive represents DNA-binding proteins, while negative represents 

non-DNA-binding proteins. 

Table 2: Introduction to the dataset. 

Number\dataset PDB14189 PDB2272 

Positive 7129  1153 

Negative  7060 1119 

Total 14189 2272 

4. Results 

The experiment was built on PyTorch [14], an open source deep learning framework. 

The GCN model was based on its PyG implementation [15], PDB14189 was used for 

testing to find the optimal super parameters, and PDB2272 was used to test model 

performance. 

The Evaluation Index. Accuracy (ACC), Matthews correlation coefficient (MCC), 

sensitivity (SN), and specificity (SP) were used as the evaluation indexes of the model 

[16], these indexes were widely used in the studies of biological sequences 

In the independent test dataset, PDB14189 was used as the training dataset to train 

the model, and PDB2272 was used as the test dataset. According to the optimal 

experimental parameters, the final DNA-binding protein classification model was 

constructed: the number of GCN[17] layers were three, dropout was 0.2, PSSM was 

selected as the feature, the input and output dimensions of each layer were (54, 54), 



(54,108), and (108,216). Other methods were compared with the method, and the 

method reached ACC (78.49%), SN (92.59%), SP (64.15%), and MCC (59.27%). 

Under certain conditions, the method has certain advantages compared with the 

existing methods，as shown in Table 3. 

Table 3: Comparison between the proposed method and existing methods on PDB2272. 

Methods ACC (%) MCC (%) SN (%) SP (%) 

Qu et al.[18] 48.33 3.34 48.31 48.35 

Local-DPP[19] 50.57 4.56 8.76 93.66 

Pse-DNA-Pro[20] 61.88 24.30 75.28 48.08 

DPP-Pse-AAC[21] 58.10 16.25 56.63 59.61 

Ms-DBP[22] 66.99 33.97 70.69 63.18 

GCN-method 78.49 59.27 92.59 64.15 

To evaluate the impact of different dropout values, Figure 4 shows the performance 

of the model according to different dropout values. When the dropout is 0.2, the 

model has the highest performance compared to other parameters. 

 

Figure 4: Comparison of prediction performance of different dropout probabilities. 



5. Conclusions 

DNA-binding proteins are enzymes, which can bind with DNA to produce complex 

proteins and play important roles in the functions of a variety of biological molecules. 

In order to improve the accuracy of prediction of DNA-binding protein, a DNA-

binding protein prediction model based on GCN and contact map was proposed. In 

this model, the dataset was preprocessed by sequence alignment; then, the structural 

information is extracted by Pconsc4 model; PSSM and some biological characteristics 

are used as features. Finally, the GCN model was constructed to train and predict 

DNA-binding protein data. The protein graph contained information about the 

interactions and positions of each residue pair, which was important for feature 

learning and predicting binding proteins. The protein graph was input into the GCN to 

extract the features, and the prediction included two full connection layers. Using 

GCN to map proteins to the representation of rich features has also become a method 

of protein feature extraction. Through training and parameter tuning, the performance 

of GCN model was better than some existing methods. It also provides some thoughts 

for other fields of biological information.  

In the future, we plan to carry out a research on feature extraction and network 

model to improve the accuracy of DNA-binding proteins and related prediction. 

Different biological features can be combined, and methods such as attention 

mechanism can be considered to improve the model, in order to achieve the goal of 

improving the prediction effect and other indicators. 
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